
Performance Comparison of Different
Sampling, Smoothing and Path Planning
Algorithms for a 2 Link 4 DOF Robotic

Manipulator
CS 5335: Robotics Science and Systems, Professor Robert Platt

Dev Vaibhav
Dept. Electrical and Computer Eng.

Northeastern University
vaibhav.d@northeastern.edu

Siddharth Maheshwari
Dept. Electrical and Computer Eng.

Northeastern University
maheshwari.si@northeastern.edu

I. ABSTRACT

This paper compares the performance of different
sampling algorithms with various path planning algo-
rithms and smoothing methods for a two-link 4-DOF
robotic manipulator in a 3D environment. The goal
of the study is to identify the most effective combi-
nation of algorithms for optimizing motion planning.
The sampling algorithms used were uniform random
sampling, Gaussian sampling, and Bridge sampling. The
path planning algorithms evaluated were Dijkstra, RRT,
PRM, A*, and RRT*, while the path smoothing algo-
rithms included Polynomial Interpolation, Bézier Curve,
Cubic Splines, B-Spline, and Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP) interpolations. The
results show the takeaway in different scenarios (static
or dynamic environment). The findings of this research
could be useful in improving the efficiency and accuracy
of robotic motion planning in real-world applications.

II. SIMULATOR:

We have used the two-link 4-DOF robotic arm pro-
vided in HW3 as the base and developed our code by
making modifications to it in MATLAB. Past experience
with the software and environment helped us a lot in
overcoming the initial library setup/ and speeding up our
learning curve. We focused directly on the sampling and
smoothing algorithms [1] which we plan to implement
and compare.

The robot arm is constrained by the joint limits as
given below
qmin =

[
−π/2 −π 0 −π

]
qmax =

[
π/2 0 0 0

]

It can be noticed that the third joint (q3) remains
fixed as both its minimum and maximum value are
equal. Because of this simplification, we were able to
view the 4D configuration space as 3D. Visualization in
figure 2 helped a lot in getting a better understanding of
sampling-based motion planning algorithms.

We also changed the locations of the obstacles from
the original code. Fig 1. is a visualization of the robot
setup along with three spherical obstacles.

Fig. 1: 2 link 4-DOF robot arm with spherical obstacles

III. SAMPLING ALGORITHMS:

Robotic systems need motion planning to navigate
complex and dynamic environments. The selection of a
sampling algorithm is a crucial step in motion planning
since it has a significant impact on the effectiveness and
precision of the process. There isn’t a single sampling
technique that performs well in every situation because



Fig. 2: Configuration Space

each one has advantages and disadvantages of its own.
To choose the best strategy for a given task, it is critical
to assess and compare various sampling algorithms.

A. Uniform Sampling

Uniform sampling is a method of generating random
samples from a given distribution such that each sample
has an equal probability of being selected. In other
words, it involves selecting a random value from a range
of possible values, with each value having an equal
chance of being selected.

For example, if we want to generate a random number
between 1 and 10 with uniform sampling, we would
assign an equal probability to each number between 1
and 10. This means that each number has a 1/10 or 0.1
probability of being selected.

Uniform sampling can be useful in a variety of appli-
cations, such as simulation, optimization, and statistical
analysis. It can help to generate random data that follows
a particular distribution, which can be used to test
hypotheses, estimate parameters, and make predictions.
It can also be used to generate random inputs for
simulations or optimization algorithms, which can help
to explore a range of possible outcomes and identify
optimal solutions.

Overall, uniform sampling is a simple and widely used
method for generating random samples, and it forms the
basis for many more advanced techniques in statistics
and machine learning.

MATLAB’s function rand is used to generate random
samples between a range. Since the generated samples
need to be within the joint limits, method provided in
[2] is used.

B. Gaussian Sampling

Uniform sampling is not a good way to find paths
through narrow passageways. To overcome this limita-
tion, Gaussian Sampling is used.

Gaussian sampling, also known as normal distribution
sampling, is a process of generating random numbers

from a Gaussian distribution. The Gaussian distribution,
also known as the normal distribution, is a probability
distribution that is widely used in statistics to describe
the variation of a random variable.

A Gaussian distribution is defined by the equation 1
and looks like Fig. 3

f(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )

2

(1)

Fig. 3: Normal Distribution curve

Steps to generate a Gaussian sample:
1) Sample points uniformly at random (as before)
2) For each sampled point, sample a second point

from a Gaussian distribution centered at the first
sampled point with some standard deviation

3) Discard both samples if both samples are either
free or in collision

4) Keep the free sample if the two samples are not
both free or both in a collision (that is, keep the
sample if the free/collision status of the second
sample is different from the first)

The process is explained mathematically in Fig 4

Fig. 4: Gaussian Sampling summarized mathematically

A standard deviation (σ = 0.75 ∗ (qmax − qmin)) is
chosen for this implementation.

MATLAB’s function normrnd is used to generate the
gaussian samples.

C. Bridge Sampling

Bridge sampling works by introducing a new "bridge"
distribution that connects the two probability distribu-
tions of interest. Here, the bridge distribution is a com-
bination of the two distributions: uniform and normal.

Steps to generate a Bridge sample:
1) Sample a point uniformly at random (as before)



2) For each sampled point, sample a second point
from a Gaussian distribution centered at the first
sampled point with some standard deviation

3) Define a third sample which is the average of these
two samples

4) Keep the third sample if the two samples are not
both free or both in a collision and the third sample
is collision-free

Fig 5 describes these steps mathematically.

Fig. 5: Bridge Sampling summarized mathematically

It is observed that upon increasing the standard de-
viation, sampling becomes faster but it still takes a lot
of time to generate a bridge sampling. More discussion
about this is in the Results section. So, we don’t think
it can be applied to real-time systems unless we already
have a pool of these samples computed offline.

IV. PATH PLANNING ALGORITHMS:

Path planning is an essential task in robotics that
involves finding an optimal path for a robot to navigate
from its starting point to a desired goal location. In
complex environments, finding an optimal path can be
challenging, and researchers have proposed various path-
planning algorithms to address this issue.

Each path-planning algorithm has its strengths and
weakness. Some algorithms are designed to be more
efficient, while others prioritize finding the shortest path
or avoiding obstacles. Evaluating and comparing differ-
ent path-planning algorithms can help identify the most
effective approach for a particular task and environment.

Our research involves implementing and comparing
various path planning algorithms to identify which ap-
proach works best for our two-link 4 DOF robotic
manipulator in a 3D environment. By examining the
strengths and weaknesses of different algorithms, we
hope to provide insights that will contribute to the
development of more effective robotic systems.

A. Dijkstra’s algorithm

Dijkstra’s algorithm is a popular algorithm used in
computer science to find the shortest path between two
nodes in a weighted graph. It is named after Dutch
computer scientist Edsger Dijkstra and is often used in
routing and as a subroutine in other graph algorithms.

The algorithm works by maintaining a priority queue
of vertices to be explored. Initially, only the starting
vertex is in the queue, with a distance of zero. The
algorithm then repeatedly extracts the vertex with the
smallest distance from the priority queue and relaxes all
of its neighboring vertices, updating their distances if a

shorter path is found. The algorithm terminates when the
destination vertex is extracted from the queue.

The algorithm maintains two data structures: a set
of visited vertices and a set of tentative distances. The
visited set contains all vertices that have been fully
explored, while the tentative distance set contains the
shortest distance to each vertex found so far. Fig. 6 shows
the Dijkstra’s algorithm pseudo code.

Fig. 6: DIJKSTRA pseudo code

B. Probabilistic RoadMap (PRM):

The probabilistic roadmap planner is a motion plan-
ning algorithm in robotics, which solves the problem
of determining a path between a starting configuration
of the robot and a goal configuration while avoiding
collisions. An example of a probabilistic road map
algorithm explores feasible paths around a number of
polygonal obstacles. In our case, we have three spherical
obstacles.

The basic idea behind PRM is to take random samples
from the configuration space of the robot, test them for
whether they are in the free space, and use a local planner
to attempt to connect these configurations to other nearby
configurations. The starting and goal configurations are
added in, and a graph search algorithm is applied to the
resulting graph to determine a path between the starting
and goal configurations. Fig 7 is the pseudo-code which
we have used for the implementation.

Fig. 7: PRM pseudo code



There are however, some problems associated with
PRM which are solved by RRT:

• two steps: graph construction, then graph search
• hard to apply to problems where edges are directed,

i.e. kinodynamic problems

C. Rapidly Exploring Random Tree (RRT)

It’s a sampling-based approach that explores the con-
figuration space of a robot to find a collision-free path
from a starting configuration to a goal configuration.
The basic idea of the RRT algorithm is to grow a tree
of connected configurations, where each configuration
represents a valid state of the robot. The tree is grown
randomly, with new configurations being added to the
tree in a way that balances the exploration of unexplored
areas with progress towards the goal configuration (bi-
asing).

Once the RRT algorithm has constructed the tree,
it searches for a path from the start configuration to
the goal configuration. This path is found by traversing
the tree from the goal configuration back to the start
configuration. The algorithm has been shown to be
effective in many different robotic applications, such as
motion planning for autonomous vehicles, manipulator
planning for industrial robots, and path planning for
aerial vehicles.

RRT solves the problems faced in PRM by:
• creating a tree instead of a graph. So, no graph

search needed!
• making a tree rooted at start or goal. So, edges can

be directed.
Fig 8 shows the implemented pseudo code

Fig. 8: RRT pseudo code

Chosen step size (α = 0.2), Goal biasing parameter
(β = 0.1), and threshold distance (0.3) within which if
qnew comes closer to qgoal and edge between them is
collision-free, goal node and an edge between qnew and
qgoal is added to the tree.

D. Rapidly-exploring Random Tree Star (RRT*):

RRT* (Rapidly-exploring Random Tree Star) is an
extension of the Rapidly-exploring Random Tree (RRT).
It aims to efficiently explore the state space of a robotic

system by constructing a tree-like structure. It works by
iteratively adding new nodes to the tree, with the goal
of eventually finding a path from the initial state to the
goal state. The algorithm uses a heuristic to bias the tree
expansion towards the goal region, making it more likely
to find a solution quickly.

The "Star" in RRT* refers to the way the algorithm
optimizes the path found by the tree. RRT* uses a cost
function to determine the quality of the path, and it
iteratively rewires the tree to find a lower-cost path. This
approach ensures that the algorithm finds an optimal
solution while exploring the state space efficiently.

It has been used in various applications, including
robotic manipulation, autonomous navigation, and UAV
flight planning. It is known for its scalability and robust-
ness in high-dimensional state spaces.

Initially, we tried to find the radius using the formula
in the pseudo-code but it did not work out as expected.
So, we hard-coded the search radius to 0.5 after ob-
serving some iterations and distance between qnew and
other nodes.

Fig 9 shows the implemented pseudo code. A little
tweak similar to RRT is implemented here to bias the
tree growth toward the goal. Fig 10 shows the nodes in
the tree generated by RRT*.

Fig. 9: RRT* pseudo code

E. A-star (A*)

In our research, we choose to implement the A*
algorithm due to its popularity and effectiveness in
finding optimal paths in complex environments. A* uses
heuristics to estimate the distance to the goal from
each potential path and selects the path with the lowest
estimated cost, making it an efficient and widely used
approach for path planning.



Fig. 10: RRT* tree growth (only nodes shown)

The A* algorithm also allows for tuning of the heuris-
tic function to optimize for different criteria, such as
minimizing travel time or avoiding obstacles. Further-
more, its optimality and completeness make it a reliable
choice for robotic motion planning.

Therefore, we selected the A* algorithm as one of
the path planning algorithms to evaluate its effective-
ness for our two-link 4 DOF robotic manipulator in
a 3D environment. By comparing A* with other path-
planning algorithms, we aim to provide insights into its
performance and limitations, which may contribute to the
development of more effective path-planning strategies
for robotics.

Fig. 11 shows the implemented pseudo-code.

Fig. 11: A* pseudo code

V. PATH SMOOTHING ALGORITHMS:
After the motion planning algorithms generate a path,

we shorten it using the technique in HW3 which results
in a lot fewer waypoints. This is then fed to the interpo-
lation algorithms. We used the path generated by RRT*
with uniform sampling because this had most zig-zags
and was fast to compute.

A. Linear Interpolation:

Linear interpolation is a method of estimating a value
between two known values on a straight line. In other
words, it is a way to find an intermediate value between

two points on a line. This technique is commonly used in
various fields such as engineering, physics, and computer
graphics.

The process of linear interpolation involves finding
the equation of the line that passes through two given
points, and then using this equation to estimate the value
of an unknown point between the two known points. The
formula for linear interpolation is given by equation 2:

y = y1 +
(y2 − y1)

(x2 − x1)
∗ (x− x1) (2)

where:
y is the estimated value
y1 and y2 are the y-coordinates of the two known points
x1 and x2 are the x-coordinates of the two known
points
x is the x-coordinate of the unknown point

To use linear interpolation, you need to know the coor-
dinates of two points on a line and the value of one of the
coordinates at an intermediate point. For example, if you
know the temperature at two different times and want to
estimate the temperature at a specific time between those
two times, you can use linear interpolation.

B. Polynomial Interpolation:

Polynomial interpolation is a commonly used tech-
nique for path smoothing. We used this technique to
smoothen the path of a robot navigating through a
complex environment. For each joint of the robot, we
fit a polynomial curve (in a least-squares sense) to
the original path using the polyfit and polyval
functions in MATLAB. The resulting smoothed path
closely follows the original path and is stored in a
matrix. This technique allows for a smoother and more
continuous path that reduces the risk of collisions with
obstacles and improves overall performance.

We have used (n-1) degree polynomial, where n is the
total number of waypoints.

In our code, we first define the time parameter t and
the interpolation time parameter ti. We then use a loop
to perform polynomial interpolation separately for each
joint of the robot.

C. Bézier Curve:

These parametric curves make use of ‘control points’
to define the shape. At their core, they make use of
Bernstein polynomial functions. Given a set of n + 1
control points P0, P1, ..., Pn, the corresponding Bézier
curve (or Bernstein-Bézier curve) is given by equation 3

C(t) =

n∑
i=0

PiBi,n(t) (3)



where, Bi,n(t) is a Bernstein polynomial and t ∈ [0,
1]. A Bernstein polynomial of degree n is defined by 4

Bi,n(t) =

(
n

i

)
ti(1− t)n−i (4)

where, (
n

i

)
=

n!

i!(n− i)!
(5)

The algorithm’s ability to generate smooth and contin-
uous paths with minimal changes in direction or speed
makes it an ideal choice for creating efficient and safe
navigation strategies for robots. The process involves
defining the number of control points, computing the
Bezier coefficients, defining spacing between control
points, and generating equally spaced points to compute
joint angles using the Bezier curve formula. By applying
this formula to each joint separately, a smooth path is
generated, which is then stored in a matrix.

D. Cubic Splines:

To interpolate data points and produce a continuous,
smooth curve, mathematicians use spline interpolation.
In interpolating problems, spline interpolation is often
preferred to polynomial interpolation because it yields
similar results, even when using low degree polynomials,
while avoiding Runge’s phenomenon for higher degrees.
The speciality about cubic splines is that it uses a
third order polynomial and when the data points are
connected using this curve, it produces a continuous and
differentiable curve. Since the resulting curve exhibits
C2 continuity, its first and second derivatives are also
continuous. This characteristic guarantees the curve’s
smoothness and natural-looking shape, which makes it a
prime option for path smoothing.

We first generate a path with the help of a path
planning algorithm. It is then shortened and interpo-
lated using spline interpolation to produce a continuous,
smooth curve. The spline interpolation is carried out in
MATLAB using the interp1 function. The initial path
and the appropriate interpolation interval are specified.
Robot motion planning is then done using the resulting
smoothed path.

By utilizing spline interpolation for path smoothing,
we may reduce the effect of data noise and provide
our robotic systems with reliable and precise motion
planning.

E. B-Spline or Basis Spline :

In order to interpolate a series of waypoints, the B-
spline path smoothing technique builds a control polygon
based on those waypoints. It is a generalization of the
Bézier curve. Interior points are calculated using the con-
trol polygon, and a polynomial is built using MATLAB’s
bsplinepolytraj function based on these points.

The polynomial is assessed at a set of evenly spaced
locations between 0 and 1 to get the smooth path.

The control polygon generation algorithm begins by
dividing the original path into four sets of waypoints.
These waypoints are used to create a control polygon,
which is a polygonal approximation of the original path.
If the original path has only one segment, the algorithm
returns it as the smoothed path. Otherwise, the algorithm
creates matrices to calculate the interior points of the
control polygon. It also adjusts the endpoints of the
control polygon to ensure a smooth transition between
segments. The resulting smoothed path approximates
the original path while minimizing abrupt changes in
direction.

F. Piecewise Cubic Hermite Interpolating Polynomial
(PCHIP):

Another interpolation method is pchip which stands
for Piecewise Cubic Hermite Interpolating Polynomial.

To implement this method in MATLAB, we first
create a time vector t that spans the length of the
original path. We then define a new time vector ti with
smaller intervals, which determines the resolution of the
interpolation. For example, we use 0.01 as the interval
size, but this value can be adjusted to get smoother or
coarser paths.

Finally, we use the interp1 function to compute the
smoothed path by interpolating the original path at the
new time vector ti. The ’pchip’ option specifies the
type of interpolation to use. The resulting smoothed path
will have the same number of dimensions as the original
path and will be defined at the new time vector ti.

VI. RESULTS :
A. Path Planning Algorithm Results and Analysis :

The sampling algorithm used for path planning can
significantly impact the computational time required.
Our experiments showed that uniform sampling with
Dijkstra or A* provides the fastest results for online
computation, while bridge or Gaussian sampling can
be used for offline calculations. It is worth noting that
bridge sampling was very slow, taking almost 16.5
minutes to find 100 samples.While, uniform sampling
is the fastest, taking only 22.73 seconds to find 100
samples. On the other hand, Gaussian/Normal Sampling
takes 65.00 seconds to perform the same task, with the
runtime decreasing as standard deviation is increased.
Overall, the choice of sampling algorithm will depend
on the specific requirements of the task at hand.

Regarding the planning algorithm, we found that Di-
jkstra is the fastest option and provides the shortest path.
A* is even faster, but its path length is slightly longer
than that of Dijkstra. On the other hand, RRT provides a
fast path planning solution but has a longer path length



than Dijkstra and A*. Therefore, the choice of a suitable
planning algorithm should depend on the specific appli-
cation requirements, such as the desired speed and path
length. Therefore, our study provides a comprehensive
analysis of various sampling and planning algorithms
for path planning in a static environment. Our findings
can guide the selection of appropriate algorithms for
different robotic applications, considering factors such
as the environment, computation time, and accuracy.

Fig. 12: Motion Planning Algorithm results comparison

Regarding Table 12, we captured data for 10 iterations
for each combination: 5*3*10 = 150 iterations total. For
Runtime, mean result is reported.

[22,28] mean that the path length was within that
particular range for the 10 iterations.

Here in Table 12, CANCELLED denotes that we
canceled those experiments as it took a lot of time to
find samples (waited easily > 5 mins)

Key Takeaways:

• Use Bridge/ Gaussian Sampling for offline calcula-
tion while Uniform for online.

• Dijkstra is fast and provides shortest path.
• A* is fastest but path length is a bit more.
• RRT is fast but path length is more.

B. Path Smoothing / Interpolation Algorithms Results
and Analysis:

For path smoothing all the figures from Fig 13 to Fig
17 shows the path in reduced dimension configuration
space for the same RRT* path and shortened path but
different smoothing algorithms applied on them. Here is
how various figures show different algorithms:

-Fig 13 shows Polynomial Interpolation for (n-1)
degrees of polynomial where n is the waypoints in the
shortened path (4 here).

-Fig 14 shows the Bézier Curve for the given short-
ened RRT* path.

-Fig 15 shows the Cubic Spline on the shortened RRT*
path.

-Fig 16 shows the Basis Spline on the shortened RRT*
path.

-Fig 17 shows the Piecewise Cubic Hermite Interpo-
lating Polynomial (PCHIP) on the shortened RRT* path.

Fig. 13: Polynomal Interpolation

Fig. 14: Bezier Curve Interpolation

Fig. 15: Cubic Spline Interpolation

To compare the performance of different interpolation
algorithms shown in Table 18, we used the RRT* path
generated from uniform sampling, which had the most
zig-zags. The original path length from RRT* with
uniform sampling was 28. To make the path smoother,
we used a path shortening algorithm which reduced the
path length to 4. This shortened path was then fed to
the interpolation algorithms for further smoothing and
to produce a more natural-looking and continuous path.
Key Takeaways:

• Linear Interpolation is the most efficient algorithm



Fig. 16: B-Spline Interpolation

Fig. 17: PCHIP Interpolation

Fig. 18: Path Smoothing/ Interpolation Algorithm results
comparison

for path smoothing in terms of runtime.
• Bezier Curves tend to have around 45% collision

with obstacles after path smoothing.
• Apart from Linear Interpolation all other algo-

rithms, it is recommended to check for obstacles
in the new path as it may have intersecting points
with obstacles.

Looking at the different interpolation methods we
can say the following::

• Linear Interpolation: Requires at least 2 points.
• Polynomial Interpolation: Higher degree polyno-

mial required if the waypoints increase and are in a
very zig-zag fashion which is computationally more
expensive.

• Spline: Requires at least 4 points. Requires more
memory and computation time than ’pchip’ but the
path is C2 continuous.

• Bezier Curve: The curve passes through a convex
hull of control points. Hence, does not pass through
the waypoints.

• B-Spline: As seen from the Fig 16, closer to the
shortened path but more computationally expensive.

• Piecewise Cubic Hermite Interpolating Polyno-
mial (PCHIP): Requires at least 4 points. Requires
more memory and computation time than ’linear’.

VII. CHALLENGES

During the implementation of the different algo-
rithms, we faced various challenges that needed to be ad-
dressed. One such challenge was that the RRT* tree was
expanding away from the goal. After careful analysis,
it was discovered that one of the function’s arguments
was being overwritten inside the function, resulting in
the RRT* tree’s expansion away from the goal. This
challenge was overcome by fixing the duplicate variable
name issue, which helped to ensure the correct execution
of the RRT* algorithm.

Another challenge that we faced during the imple-
mentation was finding appropriate functions for different
types of interpolation. We found that some interpola-
tion methods were not readily available in the stan-
dard libraries, which required us to create our own
interpolation functions. We tackled this challenge by
researching different types of interpolation methods and
going through various tutorials. Eventually, we were able
to find suitable functions or create our own functions
for all the required interpolation methods. Overall, these
challenges provided valuable learning experiences that
helped us improve our programming skills and problem-
solving abilities.

VIII. FUTURE IMPROVEMENT AREAS

• Trying all combinations which are left: One
potential future improvement for our path planning
algorithm is to try all combinations of sampling,
interpolation, and smoothing methods that we did
not test in our experiments. This could potentially
lead to discovering a more optimal combination that
performs better than the ones which we already
tested. However, this approach could be computa-
tionally expensive and time-consuming, especially
if the number of combinations is large.

• Using much more sophisticated obstacles: An-
other future improvement for our path planning
algorithm is to use much more sophisticated ob-
stacles, such as ones that move over time or have



complex shapes. This could make the path planning
problem more challenging and realistic. However,
this would require more advanced sensors and per-
ception algorithms to detect and track these obsta-
cles, as well as more complex and computation-
ally expensive path-planning algorithms to navigate
around them.

IX. CONCLUSIONS

In conclusion, we have successfully implemented all
the planned path planning and smoothing algorithms.
For online computation in static environments, we rec-
ommend using uniform sampling with Dijkstra or A*,
while for dynamic environments, uniform sampling with
RRT or RRT* is preferred due to their efficiency. When
it comes to path smoothing and interpolation, we have
found that Spline is an excellent option, as it produces a
C2 continuous curve, resulting in a smooth and natural-
looking path. However, it requires at least four points to
function properly. Overall, our implementation of these
algorithms has proven to be effective and efficient for
path planning and smoothing in various scenarios.

REFERENCES

[1] Ravankar A, Ravankar AA, Kobayashi Y, Hoshino Y, Peng CC.
Path Smoothing Techniques in Robot Navigation: State-of-the-
Art, Current and Future Challenges. Sensors (Basel). 2018 Sep
19;18(9):3170. doi: 10.3390/s18093170. PMID: 30235894; PM-
CID: PMC6165411.

[2] https://www.mathworks.com/help/matlab/ref/rand.html#buiavoq-9
[3] https://en.wikipedia.org/wiki/Normal_distribution#/media/File:

Normal_Distribution_PDF.svg

https://www.mathworks.com/help/matlab/ref/rand.html#buiavoq-9
https://en.wikipedia.org/wiki/Normal_distribution#/media/File:Normal_Distribution_PDF.svg
https://en.wikipedia.org/wiki/Normal_distribution#/media/File:Normal_Distribution_PDF.svg

	Abstract
	SIMULATOR:
	Sampling Algorithms:
	Uniform Sampling
	Gaussian Sampling
	Bridge Sampling

	Path Planning Algorithms:
	Dijkstra's algorithm
	Probabilistic RoadMap (PRM):
	Rapidly Exploring Random Tree (RRT)
	Rapidly-exploring Random Tree Star (RRT*):
	A-star (A*)

	PATH SMOOTHING ALGORITHMS:
	Linear Interpolation: 
	Polynomial Interpolation: 
	Bézier Curve: 
	Cubic Splines: 
	B-Spline or Basis Spline : 
	 Piecewise Cubic Hermite Interpolating Polynomial (PCHIP): 

	Results :
	Path Planning Algorithm Results and Analysis : 
	Path Smoothing / Interpolation Algorithms Results and Analysis: 

	Challenges
	Future Improvement Areas
	Conclusions
	References

