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I. ABSTRACT

This paper presents a system capable of autonomously
detecting lanes and car number plates using a combina-
tion of classical computer vision techniques and deep
learning models. It may be used to detect suspicious car
number plates and trigger an alert system. Additionally,
the system can also be used for keeping track of vehicles
entering a building. Since the lane detection system uses
classical CV, it is sensitive to the camera’s pose with
respect to the road, we have tried to make the code
dynamic by adapting to different road conditions based
on a selected polygon from the road video feed. This
polygon governs the quality of the detected lanes. This
project’s potential application extends beyond the scope
of the current study and can be used for various purposes,
including road safety and security. Since C++ language
is used to code, it can be used in real-time applications.

II. RELATED WORK:

We did some literature review and found these papers
to be interesting.

A. Robust Lane Detection and Tracking in Challenging
Scenarios [12]

The paper proposes an approach for lane detection
and tracking in challenging scenarios such as shadows,
occlusion, and sharp curves. The proposed system in
the paper used a traditional computer vision pipeline
that consists of image pre-processing, lane detection, and
lane tracking modules. Preprocessing includes Gaussian
Blur, color space conversion, edge detection, and region
of interest selection. The lane detection module uses a
combination of Hough Transform and sliding window
techniques to extract lane boundaries. The paper also
discusses the handling of challenging scenarios that track
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the detected lanes over time and performs outlier rejec-
tion based on the lane width and distance constraints.

B. R-CNN (Region-based Convolutional Neural Net-
works) [2]

R-CNN is a region based Object Detection Algorithm
developed by Girshick et al., from UC Berkeley in 2014.
It is one of the first large and successful application of
convolutional neural networks to the problem of object
localization, detection, and segmentation. The approach
was demonstrated on benchmark datasets, achieving then
state-of-the-art results on the VOC-2012 dataset and the
200-class ILSVRC-2013 object detection dataset.
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Fig. 1: R-CNN architecture

Region based CNN consists of three modules as
shown in Fig. 1 — Region Proposal, Feature Extractor,
and Classifier.

1) Region Proposal: When an input image is given,
the region proposal tries to detect different regions
(2000) in different sizes and aspect ratios. In other
words, it draws multiple bounding boxes in the
input image as shown in Fig. 1 (2. Extract region
proposals ( 2k)).

2) Feature Extractor: Each proposed region will be
trained by a CNN network and the last layer (4096
features) will be extracted as features so the final
output from Feature extractor will be Number of
proposed regions x 4096



3) Classifier: Once the features are extracted we need
to classify the objects inside each regions. To do
this a linear SVM model is trained for classification,
Specifically one SVM model for each class.

Cons of R-CNN:

1) It takes a huge amount of time to train the network
as you would have to classify 2000 region proposals
per image.

2) It cannot be implemented real time as it takes
around 47 seconds for each test image.

3) The selective search algorithm is a fixed algorithm.
Therefore, no learning is happening at that stage.
This could lead to the generation of bad candidate
region proposals.

Some of these limitations like execution/ training time
are overcome in YOLOvS5s which is a major bottleneck
in depolying R-CNN to real-time systems or whenever
we have time constraint.

C. Number Plate Detection Using YOLOV4 and Tesser-
act OCR

A recent research paper by G. Poorani et al. from
SKCT, TN, India (2022) [4] proposed a method for car
number plate detection. The proposed approach employs
the state-of-the-art YOLOv4 object detection algorithm
for detecting the number plate region. Further, a series
of pre-processing steps are applied to the detected re-
gion, including resizing the image to grayscale, applying
Gaussian smoothing, Otsu binarization, and dilation, to
improve the quality of the image. The paper also utilizes
Tesseract OCR for recognizing the characters in the
detected number plate region. Looking at this paper we
found that shading can impact a lot while recognition of
text therefore we decided to add Lumination correction
in our project.

III. METHODOLOGY:

The code gives the user the flexibility to provide an
image/ video/ live video feed as input based on the
command line arguments. It can automatically identify
if the input is image or a recorded video by counting
number of frames in the source and can process the
frames accordingly.

A. Lane detection using Classical CV

In the field of autonomous driving and advanced driver
assistance systems(ADAS), lane detection and deviation
from the lane plays an important role. The lane detection
system uses sensors such as cameras or lidar to detect
lane markings on the road and determine the vehicle’s
position within the lane. Road accidents are a major
problem around the world and lane departure is one of
the leading causes of accidents on highways and other
high-speed roads. By providing warnings to the driver

when the vehicle is drifting out of the lane or adjusting
the vehicle’s position automatically within the lane, a
lane detection system can help prevent accidents caused
by lane drift or unintended lane changes. As autonomous
driving systems continue to evolve, the lane detection
system will play a major role to ensure the safe and
efficient operation of autonomous vehicles. As defined
by the Society of Automotive Driving (SAE) in the
current Level 3 and Level 4 autonomy, these systems are
crucial for ensuring the safety of the driver and making
sure that the vehicle stays within its designated lane and
operates safely and effectively
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1) Implementation: 1. Read Input Frame: The First
Step is to read the input frame, which can be either live
or recorded video frame

2. Preprocessing: The second step is to apply
Gaussian blur to the input frame to remove noise and
smoother the image refer 3 3. Grayscale Conversion:

T T

Fig. 3: Gaussian Blur on Video / live Frame

We use the denoise image and convert it to grayscale to
simplify the frame 4 4. Canny Edge Detection: Canny
Edge Detection is applied to detect the edges from the
grayscale frame refer 5

5. Region of Interest Extraction using GUI: We have
created a GUI for the user to select the polygon using
mouse clicks which extracts part of the frame that
contains lane lines refer 6

6. Perspective Transform: Next Step to detect lanes is
to align our visual systems to visualize the road ahead
in a manner that they seem to be looking at it from
a bird’s eye perspective, this will help in calculating



Fig. 6: ROI Extraction on Video/ live Frame

the curvature of the road. The bird’s eye view can
be achieved by applying the perspective transformation
essentially mapping a set of four points bounding the
lane in our input frame to the desired set of points and
thus generating the desired top-down view. Refer 7

Fig. 7: Perspective Transformation on Video/ live frame

7. Hough Transformation and Peak Detection: After

Computing Perspective Transformation, we compute the
histogram of the bottom half of the transformed image
to find the x-coordinates of the left and right lane lines.
The histogram represents the frequency of occurrences
of each pixel intensity in the frame and in our case, it
shows where the lane lines are most likely to be.

After applying a perspective transform to the region
of interest, we use the Hough line Transform to detect
the lines in the transformed image. The Hough Line
transform is a technique to detect straight lines in an
image by converting the pixel coordinate to parameter
space, where each line is represented by a point in the
parameter space. The Hough Line transform can detect
lines even if they are broken or partially visible in the
image. After detecting the lines we optimize them to get
the left and right lines

B. Object detection using YOLOV5s

YOLOVS is available in four models, namely n, s,
m, 1, and x, standing for nano, small, medium, large
and extra large respectively, each one of them offering
different detection accuracy and performance as shown
below in Figs 8, 9, and 10.
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Fig. 9: YOLOvV5 model comparison (from PyTorch)

Model Params Accuracy CPU GPU

Name (Million) (mAP 0.5) Time (ms) Time (ms)
YOLOv5n 1.9 457 45 6.3
YOLOvSs 72 56.8 98 6.4
YOLOvSm 21.2 64.1 224 8.2
YOLOVSI 46.5 67.3 430 10.1
YOLOvS5x 86.7 68.9 766 121

Fig. 10: YOLOvVS5 Model information



From Figs 8, 9, and 10, it can be seen that the
YOLOv5n is the fastest model but is the least accu-
rate. The accuracy increases as we move towards more
complex models but simultaneously the speed decreases
because number of parameters in the model increase.

We used YOLOVSs pretrained model from Ultralytics
[5] as it provides a good balance between accuracy and
speed required for our application to detect objects in
the video which include mostly cars, pedestrians, laptop,
chair, monitor, traffic signal. We also wanted to detect
number plates but it was not present as one of the 80
classes in the pretrained model. For this, we found a
dataset [6] on Roboflow and trained the model with three
epochs. The dataset contains approx. 19K training, 1.8K
validation, and 882 test images. Training took around
23 minutes to complete on Google CoLab and mAP of
98.2% was achieved.

The two models were converted to ONNX first 11 and
then used in the C++ code with openCV DNN function-
ality 11. We took help from https://netron.app/
to visualize the onnx model which helped a lot in
understanding the model and debugging the code.
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Fig. 11: PyTorch Model to ONNX conversion
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Fig. 12: YOLOvV5s with OpenCV DNN workflow

Fig. 12 shows the workflow. Below parameters are
used for different thresholds.
SCORE THRESHOLD =
bility class scores
NMS THRESHOLD =
bounding boxes
CONFIDENCE THRESHOLD =
probability detections

After performing a forward pass to the network, we
get a 2D array 13 of size 25200x85 (rows and columns)

0.5 // To filter low proba-
0.45 // To remove overlapping

0.45 // Filters low

(in case of number plate, it is 25200x6). The rows
represent the number of detections. So each time the
network runs, it predicts 25200 bounding boxes. Every
bounding box has a 1-D array of 85 entries that tells the
quality of the detection. This information is enough to
filter out the desired detections.

|X ‘ Y |W | H ‘ Confidence ‘ Class scores of 80 classes |

Fig. 13: YOLOvS5s output for 80 classes

The first two places are normalized center coordi-
nates of the detected bounding box. Then comes the
normalized width and height. Index 4 has the confidence
score that tells the probability of the detection being an
object. The following 80 entries tell the class scores of 80
objects of the COCO dataset 2017, on which the model
has been trained.

The following post-processing is done to get good
detections.

1) Loop through detections.

2) Filter out good detections.

3) Get the index of the best class score.

4) Discard detections with class scores lower than the
threshold value.

After filtering good detections, we are left with the
desired bounding boxes. However, there can be mul-
tiple overlapping bounding boxes which is solved by
performing Non-Maximum Suppression. The function
cv::dnn: :NMSBoxes is used to do this.

C. Number plate recognition using Tesseract OCR

Tesseract OCR is a widely used open-source optical
character recognition engine that has proven to be ef-
fective in recognizing characters in various languages.
It provides accurate and reliable character recognition,
even in the presence of noise and other distortions.
Tesseract OCR is also flexible and can be adapted to
various applications, including license plate recognition.

In the context of license plate recognition, Tesseract
OCR can help extract characters from the license plate
image, which can then be used to identify the license
plate number. Tesseract OCR can handle various font
types and sizes, and can recognize both uppercase and
lowercase characters, making it a suitable choice for
license plate recognition. Overall, Tesseract OCR is a
powerful tool for text recognition and has become a
popular choice for license plate recognition applications.

1) Process Flow as per Fig 14: Lets look at how we
are able detect the text from this ROI given by YOLOVS:

(a) Do Lumination Correction refer 18: The first step
is to perform illumination correction on the input
image. This is done to improve the contrast of the
image and make the text more visible also get rid of
shade. For doing this we defined a function called
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Fig. 21: Results of Detected Number Plate

"illuminationCorrection" which performs illumina-
tion correction on an input image. It converts the
input image from the BGR color space to the LAB
color space, splits the LAB image into its three
channels, applies the Contrast Limited Adaptive
Histogram Equalization (CLAHE) algorithm to
the L channel to enhance the contrast of the image,
merges the processed LAB channels, converts the
LAB image back to the BGR color space, and
replaces the original image with the corrected one.
This function is useful in improving the image
quality and reducing the effect of uneven lighting
conditions on the object of interest.

Convert Into Gray Scale Image: The next step is to
convert the input image to grayscale. This is done
to simplify the image processing tasks and reduce
the computational overhead.

Perform OTSU Thresholding refer 20: After con-
verting to gray scale, the Otsu’s method is ap-
plied to threshold the image using the threshold
function. This is a common technique to separate
foreground from the background in an image.
Find Contours: Contours are found in the thresh-
olded image to identify the individual characters.
These contours are the boundaries of the con-
nected components in the image. To find con-
tours of each connected component using the
findContours function with RETR_EXTERNAL
and CHAIN_APPROX_SIMPLE flags.



(e) Sort contours from left to right: The identified
contours are then sorted from left to right based on
their x-coordinates using the std: : sort function.
This is done so that the recognized characters can
be concatenated in the correct order to form the
number plate.

(f) Perform OCR for each character refer 15: For each
contour, a bounding box is extracted and used to
extract the character image. Then, Tesseract OCR
is applied to recognize the character.

(g) Concatenate recognized characters to form the num-
ber plate: The recognized characters are concate-
nated in the correct order to form the number plate.
This is the final output of the system.

(h) Output Text refer 21: The recognized text is out-
putted by the OCR engine, and this text is superim-
posed on the input image to display the final output.

2) Process of Performing Tesseract OCR Fig 15: Lets
see the steps of how we are performing Tesseract OCR:

(a) Initialize a Tesseract API object using the
tesseract::TessBaseAPI class.

(b) Set the language of the OCR to English and
the OCR engine mode to LSTM only using the
TessBaseAPI::Init function.

(c) Set the page segmentation mode
to PSM_SINGLE_CHAR using the
TessBaseAPI: :SetPageSegMode function.

(d) Set the image data and parameters using the
TessBaseAPI: :SetImage function to pass the
character image as input to the OCR engine.

(e) Perform OCR on the image using the
TessBaseAPI: :Recognize function to
extract the character information.

(f) Append the recognized character to the number
plate.

IV. EXPERIMENTS AND RESULTS:

We performed these experiments to test the system
and here are their results.

A. Lane detection using Classical CV

The system was tested with different videos under
different lighting conditions. If there is traffic on the
road, the system might fail if it obstructs the view in
the selected polygon. Usually, most of the references we
referred to had manually hard-coded the polygon vertices
to suit the video they use. We wanted to dynamically do
the process of selecting the polygon and then performing
masking. Hence we created a GUI to select the polygon
for the Video frame / live video through which we don’t
have to hard code the vertices of the polygon, we can
adjust it dynamically. Here are some results for lane
detection tested in different lighting conditions

Fig. 22: Lane detection results with not-so-bright sun-
light

Fig. 23: Lane detection results on a sunny day

Fig. 24: Lane detection results at dusk



B. Object and Number Plate detection using YOLOV5s

First, we tested the system on a bunch of images. The
system worked pretty well in detecting the objects and
the number plate. We then tested the system on a video
feed. We observed that sometimes when a car is far away
in the scene, it mistakenly classifies it as sheep in Fig.
26 but as soon as it comes closer, it correctly identifies
it as a car in Fig. 27.
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Fig. 25: Various losses for number plate detection model
trained with 3 epochs

metrics/mAP_0.5 netrics/mAP_0.5:0.9:

2
oes’
oeso
oss
0600
0s7s
0550
0s2s

2

o1

Fig. 26: Car detected as sheep when it is far

Fig. 27: Car detected correctly when it is near

Fig. 28 shows that the number plate is detected on the
car and OCR has been tried which produces incorrect
results. More explanation is explained in the next sub-
section regarding OCR results. The first inference time
shows the time taken for the original YOLOvVS5s model
to detect the object (car/ traffic etc.) whereas the second
time is for the second model which is used to detect just
the number plate.

C. Number plate OCR using Tesseract

Here we tested out OCR system on live streaming,
videos, and different images. While testing on different

Fig. 28: Number plate detected

images we were able to get 9/10 correct number plate
recognition’s which gives us accuracy of 90%. Here
are some results referred in figs 31, 29, 30. For video
and live streaming, it was observed that number plate
detection was more accurate when the car was moving
at a constant speed or was stationary. Number plates
were successfully detected and recognized when the
car was clearly visible and the number plate was not
rotated. However, some number plates with different
color backgrounds could not be recognized if the car was
constantly accelerating or decelerating. This was because
the thresholding varied constantly for each frame and
Otsu thresholding was not effective when dealing with
different color backgrounds, speeds, locations, lighting
and orientations of the number plate.

Fig. 30: Example Recognition for a image

V. CHALLENGES

While experimenting with lane detection, we found
that our pipeline was able to work in different lighting
conditions but it would fail if there are any vehicles that



! VII. CONCLUSION

In conclusion, we have successfully developed a sys-
tem capable of detecting lanes and car number plates
using a combination of classical computer vision tech-
| ! D VA niques and deep learning models. We have tested our
V& ] system on live cameras and traffic, and it has demon-

1M/ ob L strated reliable performance in detecting lanes, identify-
ing objects, and recognizing their number plates.

The system’s dynamic behavior allows it to adapt to
different road conditions, making it suitable for various
scenarios, such as detecting suspicious cars’ number
plates and tracking vehicles entering buildings. We be-
lieve that this system’s potential applications extend
beyond the scope of this study and can be used in
various fields such as road safety, traffic management,
and security.

In summary, our system offers a promising solution
for detecting lanes, object,s and car number plates
autonomously, which could contribute significantly to
improving road safety and security.
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Fig. 31: Example Recognition for a BMW

obstruct the field of view of the lanes as we can find
the peaks through the histogram. Also, If the vehicle is
moving at a high speed we were not able to detect the
lanes continuously.

We faced some challenges in training the YOLOvVS5s
model and using it in C++ with OpenCV but we over-
come them by following some tutorials [9] [10], [8] and
[11]. A lot of issues were faced in performing OCR
using Tesseract but we gained a better understanding of
the system through [13] and [14]. Although, the OCR
pipeline is not perfect, we are much more confident and REFERENCES
have direction to improve it [1] https://medium.com/@ SunEdition/

lane-detection-and- turn- prediction-algorithm- for-autonomous- vehicles- 6423f77dc84 1
[2] Ross Girshick and Jeff Donahue and Trevor Darrell and Jitendra

VI. FUTURE IMPROVEMENT AREAS Malik: Rich feature hierarchies for accurate object detection and
semantic segmentation 2014
As a future direction, we would like to explore more https://arxiv.org/pdf/1311.2524.pdf

. . . . [3] https://medium.com/analytics-vidhya/
deep learning-based techniques for lane detection, as it region-based-convolutional-neural-network-rcnn-b68ada0db871

is an essential component of our system. We believe (4 https://www.pnrjournal.com/index.php/home/article/view/426
that the current classical CV approach can be further [5] htips:/github.com/ultralytics/yolovs
improved to increase the accuracy of lane detection in  [®! ?Sﬁ;{i ”R”f:;clt‘](:)l:’gI”::L:(’t?:l/(;f/fgiﬁc/‘l““””p‘/
challenging scenarios such as bad weather conditions o (7] hiips.//pyimagescarch.com2020/09/21/
high—speed moving vehicles, or obstruction of lanes by opencv-automatic-license-number- plate-recognition-anpr- with-python/
vehicles. We found that when we try it with different . 3tetr}))lt):/v/il:;Zflli:'111.1$;}:<ﬁfjgijll:fﬁillai\ii/—upp]iculion—usinf:—onnxfrumime—1‘99()74065641}
video iHPUtS we were ﬁndlng it difficult to visualize the 9] hllps:}/lc?{rn&pcncv,com/()hjccl—dclccli()n—using—y()]L;\'S—und—()pcncv—dnn—in—c—und—pylh()r
results and had to resize the frames. [10] https://www.youtube.com/watch?v=GRtgLIwxpc4
In additon, we also pln_to imestigate other ap- 11 |12 e e
proaches for Optical Character Recognition (OCR) apart  [13] https:/pyimagesearch.com/2021/11/15/
fiom Teserct OCR, which i the cumtent OCR algo- (et ke emmion il el o vy s
rithm used in our system. We aim to test and compare S T ‘ ) o
the performance of different OCR algorithms and select
the one that offers the best results in terms of accuracy,
speed, and efficiency.
Furthermore, we would like to experiment with dif-
ferent object detection algorithms other than YOLOVS.
We believe that exploring other object detection algo-
rithms can help us improve the system’s performance,
particularly in detecting and recognizing different types
of vehicles and objects.
Overall, we are optimistic that exploring these future
directions will enhance the system’s capabilities and
contribute to the development of a more robust and
efficient system for lane detection and car number plate
recognition.
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