
Modeling and Simulation of a Planar, Bipedal
Walker Using Hybrid Zero Dynamics Control

EECE 7398: Legged Robotics, Professor Alireza Ramezani

Chenghao Wang
Dept. Electrical and Computer Eng.

Northeastern University
wang.chengh@northeastern.edu

Noah Ossanna
Dept. Mechanical Eng.
Northeastern University

ossanna.n@northeastern.edu

Dev Vaibhav
Dept. Electrical and Computer Eng.

Northeastern University
vaibhav.d@northeastern.edu

Siddharth Maheshwari
Dept. Electrical and Computer Eng.

Northeastern University
maheshwari.si@northeastern.edu

Michael Tang
Dept. Mechanical Eng.
Northeastern University

tang.mich@northeastern.edu

Kshama Dhaduti
Dept. Electrical and Computer Eng.

Northeastern University
dhaduti.k@northeastern.edu

I. ABSTRACT

This report details the approach to simulating the gait
and control of a planar, three-link bipedal robot utilizing
a Hybrid Zero Dynamics (HZD) method. In order to
simplify interactions, the group made the assumptions
that one foot remains in contact with the ground at a
time with a no slip condition, and that impacts were con-
sidered instantaneous. The procedure to achieve a stable,
realistic gait includes generating the forward kinematics
of the biped, Euler-Lagrange formulas, dynamic model,
zero dynamics, optimization, and controller design. Pro-
gressively stepping through the design process allowed
the group generate an efficient gait using a PD controller
in feedback. The report is divided into mini projects that
encapsulate the key milestones used to generate the final
gait for the bipedal robot.

II. MINI-PROJECT 1:

In order to understand the behavior of the three-link
biped, we first uncovered the underlying interactions be-
tween joint angles and positions of designated features.
The mathematical relations between the joint angles
and positions are accounted for through the formulation
of the forward kinematics. It was important for the
design that directions, relations, and naming conventions
remained consistent with those established here in order
to generate the correct corrective actions and gait.

A. Forward Kinematics Derivation

Forward Kinematics allow the derivation of point
mass positions and velocities based on the relationship
between joint angles and physical model constraints.

Point masses specifically refer to the assumed mass dis-
tributions of the robot’s legs which should be noted for
simplicity of calculation. Relations were derived through
homogeneous transformations that represent the rotation
and translation between coordinate frames. The contact
point between the stance leg and the ground would was
assumed to be the (0,0) of the world coordinate frame.
A figure of the given joint angles, point masses, and
lengths are shown in Fig 1.

Fig. 1: Given three-link 2D bipedal robot model

The generated transformation matrices were created
based on arbitrary, but consistent conventions for coordi-
nate frame placement. The positive direction for rotation
was assumed to be counter clockwise, and positive z-

direction is out of the plane of paper towards us. A
diagram of the local coordinate frames is shown below:

Fig. 2: Local coordinate frames placement on the three-
link model

Combinations of these transformations allowed the
group to calculate the position and velocity of desired
positions based on joint angles and given physical pa-
rameters. To find the position of the desired points
with respect to the origin, calculations were broken into
2 steps. The first step was finding the homogeneous
transformation matrices between the different coordinate
frames and then by multiplying these transformation
matrices with the position of the desired points defined
in their local coordinate frames.

T 0
1 =


− sin(q1) − cos(q1) 0 0

cos(q1) − sin(q1) 0 0

0 0 1 0
0 0 0 1



T 1
2 =


− cos(q3) sin(q3) 0 r

− sin(q3) − cos(q3) 0 0

0 0 1 0
0 0 0 1



T 2
3 =


cos(q2 − q3) − sin(q2 − q3) 0 0

sin(q2 − q3) cos(q2 − q3) 0 0

0 0 1 0
0 0 0 1



T 2
4 =


1 0 0 l
0 1 0 0
0 0 1 0
0 0 0 1



T 3
5 =


1 0 0 r
0 1 0 0
0 0 1 0
0 0 0 1



The position vectors for the desired point masses:
m1,m2,mt,mh are shown below

pos1m1
=


r/2

0
0
0



pos1mh
=


r
0
0
0



pos2mt
=


l
0
0
0



pos3m2
=


r/2

0
0
0


The final position of these points with respect to the

origin were found by multiplying combinations of these
transformation matrices with the position vectors, which
is shown below.

P 0
m1

= T 0
1 × pos1m1

(1)

P 0
m2

= T 0
1 × T 1

2 × T 2
3 × pos3m2

(2)

P 0
mh

= T 0
1 × pos1mh

(3)

P 0
mt

= T 0
1 × T 1

2 × pos2mt
(4)

The final results of these positions are given as:

P 0
m1

=

− r∗sin(q1)
2

r∗cos(q1)
2



P 0
m2

=

 r∗(sin(q1+q2)−2∗sin(q1))
2

− r∗(cos(q1+q2)−2∗cos(q1))
2



P 0
mh

=

[
−r ∗ sin(q1)
r ∗ cos(q1)

]

P 0
mt

=

[
l ∗ sin(q1 + q3)− r ∗ sin(q1)
r ∗ cos(q1)− l ∗ cos(q1 + q3)

]

III. MINI-PROJECT 2:
To correlate positions of interest on the robot to

desired trajectories, we began by applying the Lagrange
formalism. This formulation resolves the system’s dy-
namics as a function of kinetic and potential energies as
well as a set of generalized coordinates: (q, q̇). These
represent the states of the joint variables defined previ-
ously alongside their derivatives. The objective was to
derive dynamical equations of the following forms:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Γ (5)

ẋ = f(x) + g(x)u (6)

where equation 5 is the set of second order equations
defined by the Lagrange formalism and equation 6 is
the nonlinear state variable representation of the system.
Derivations of the inertia, coriolis, and gravity matrices
D, C, and G are explained in subsequent sections.

A. Euler-Lagrange Formalism: Support Phase

The Lagrangian was constructed as the following
function of kinetic and potential energies:

L(q, q̇) = K(q, q̇)− V (q) (7)

where L is the Lagrangian function of the generalized
coordinates (q, q̇), K is the kinetic energy term, and V
is the potential energy term. In this case, we consider the
generalized cordinates and their derivatives to represent
the 3 joint variables of the planar walker: q1, q2, q3 which
form the basis of Lagrange’s equation:

d

dt

∂L
∂q̇

− ∂L
∂q

= Γ (8)

where equation 8 results in equation 5 above following
subsequent derivations. In these equations, Γ represents
a vector of generalized forces and torques. To derive
the state space representation for the model from these
relations, the total kinetic and potential energies of the
robots links were resolved by the equations below.

Ki =
1

2
mi((

˙phcm,i)
2 + (˙pvcm,i)

2) +
1

2
Jcm,i(

˙θabsi)2 (9)

K(q, q̇) =

N∑
i=1

Ki(q, q̇) =
1

2
q̇TDq̇ (10)

V (q) =

N∑
i=1

Vi(q) =
N∑
i=1

g0mip
v
cm,i(q) (11)

where g0 is the acceleration due to gravity, mi is the
point mass of the i-th link, ph,vcm,i are the horizontal and
vertical positions of that point mass, Jcm,i is the moment

of inertia of the mass of link-i, and ˙θabsi is the absolute
angular velocity of that link. The inertia matrix D is also
derived as the following:

D(q) =
∂

∂q̇

(
∂K

∂q̇

)
(12)

and in its extended matrix form as:

De =

[
D 0
0 mtot ∗ I

]
(13)

where q = (q1, q2, q3) is the configuration vector/
variable consisting of joint angles, mtot is the sum
of all masses of the links (resolved to point masses
by assumption) and De is the inertia matrix for the
flight phase dynamics. These are calculated alongside the
ongoing swing phase dynamics derived in this section.
Next, the terms of the coriolis matrix were defined
iteratively through summation:

C(q, q̇)kj =

N∑
i=1

1

2

(
∂Dkj

∂qi
+

∂Dki

∂qj
− ∂Dij

∂qk

)
q̇i (14)

where the terms in the summation are Christoffel
symbols that denote the centrifugal (i = j) and coriolis
(i ̸= j) components of the equation of motion. Finally,
we define the gravity matrix G and input mapping matrix
B as follows:

G(q) =
∂V

∂q
(15)

B(q) =

0 0
1 0
0 1

 (16)

Equation 16 is defined based on the fact that q1
is under actuated while we have two actuated control
inputs: q2 and q3. The B matrix defined in equation
16 was used to map actuated, control inputs to the
generalized vector of forces and torques, Γ:

Γ = B ∗ u (17)

where the vector of actuated inputs u2, u3 (corre-
sponding to the inputs of joints q2, q3) was defined as

u =
[
u2 u3

]T
(18)

From these derivations for the support phase of the
robots gait, we define the state variable vector x:

x =

[
x1

x2

]
=

[
q

q̇

]
(19)

which consists of a vector containing the joint angles
and their derivative with respect to time for the planar

walker. This nomenclature allows for the derivation of
the state space form by rearranging the equations:

[
ẋ1

ẋ2

]
=

[
x2

−D−1(x1)(C(x1, x2)x2 +G(x1)

]
(20)

Splitting this equation into the terms defined by
equation 6 yield the below expressions that could be
implemented pragmatically:

f(x) =

[
dq

−D(q)−1(C(q, q̇)dq +G(q))

]
6×1

(21)

g(x) =

[
zeros(3, 2)

D−1B

]
6×2

(22)

Equations 21 and 22 have 6x1 and 6x2 dimensionality
respectively due to the planar walker having 3 joint
configuration variables. Next, the above equations were
adapted to the extended phase of the walker’s gait to
begin formulating a switching model to transition from
swing phase to impact dynamics and vice versa.

B. Swing Phase and Impact Mapping:

The goal of this approach was to develop a model
in which the first part of the gait is described by the
single support dynamics. Then, when impact occurs, a
switching condition is applied and the swing (extended
state) model is applied using an impact model. For this
reason, this section explores the derivation of an impact
model that represents the instantaneous point in which
both the stance and swing leg are in contact with the
ground. The following set of coordinates are realized to
begin representing this state:

qe =

[
q
pe

]
3×1

=

 q

phcm,e

pvcm,e


3×1

(23)

where ph,vcm,e are the horizontal and vertical positions
of the robots center of mass in the extended state right
before impact. Applying the Lagrangian to this state
fields the relation

De(qe)q̈e = Ce(qe, q̇e)q̇e+Ge(qe) = Be(qe)u+δFext (24)

where the inertia matrix for the extended state is
defined above in equation 13 and the other matrices
are derived identically using the new extended variables.
δFext represents a vector of external forces due to con-
tact between the swing leg and ground surface. Equation
24 can be integrated over the infinitesimal contact time
of the impact to give the force:

Fext = De(qe
+)q̇e

+ −De(qe
−)q̇e

− (25)

where q̇e
−/+ are the joint velocities before or after

impact. Crucially, q̇e− is defined by the single support
phase model which allows the principle of virtual work
to be applied as:

Fext = E2(q
−
e)

TF2 (26)

where E2(qe) =
∂p2qe
∂qe

and F2 is the vector of forces
acting at the swing leg. Then, by assuming that the swing
leg does not slip or bounce when it makes an impact
with the ground, the set of equations can be established
below:

[
De(q

−
e) −E2(q

1
e)

T

E2(q
1
e) 02×2

][
q̇e

+

F2

]
=

[
De(q

−
e)q̇e

−

02×1

]
(27)

which can be solved for q̇e
+ and F2 according to

[1]. In MATLAB, we relabel the impact coordinates to
achieve the relation x+ = ∆(x−) which represents the
post- and pre-impact states respectively. After simplifica-
tion, we combined supported and swing phase dynamics
represented by the following hybrid model as defined in
[1]: {

ẋ = fs(x) + gs(x)u x− /∈ S
x+ = ∆x− x− ∈ S

(28)

where S is the switching set defined in [1]. The
completion of the switching model allowed for the gait
design described in subsequent sections.

IV. MINI-PROJECT 3: GAIT DESIGN

A. Zero Dynamics: Bezier Polynomial

The gait design procedure was done by using an
optimizer and reducing the dimensionality of the system
to a projection onto the zero dynamics manifold. Zero
dynamics equations are the internal dynamics of the sys-
tem that is compatible with the output being identically
zero. Since the dimension of the zero dynamics is less
than the dimension of the model itself, this optimization
approach is efficient in computation due to its selection
requirement from fewer parameters. This approximation
method retains all essential features of the bipedal model
without sacrificing the accuracy of the simulation results.

The zero dynamics manifold is defined by z1 and z2,
where z1 is the cyclic variable (qN or q1) and the relation
below.

z2 = ż1 = ˙qN = q̇1

Next, we parameterized the body angles (qb =
[q2, q3]

T) in terms of the cyclic variable (qN) using
a Bezier polynomial of degree M = 4. The Bezier

polynomial (bi(s)) takes an input s which, in the case of
this simulation, is referred to as the gait timing variable
where s = 0 is the start of gait and s = 1 is the end of
gait. This variable is defined such that 0 ≤ s ≤ 1 and
produces a range R of degree M. We consider Bezier
coefficients (αi

k) that are M+1 in number and controlled
variables q2 and q3 which are the body angles of the
planar walker to be parameterized by the polynomial.
The Bezier coefficients are equally spaced along the
Bezier curve with subscript i referring to the index of
the controlled variable (i = 2 for q2 and i = 3 for q3).
The gait timing variable is defined as

s =
qN − q+N
q−N − q+N

(29)

where q−N is the pre-impact value of cyclic variable
just before touchdown of stance leg and q+N is the
post-impact value of cyclic variable immediately after
touchdown of stance leg. From these definitions, the
Bezier polynomial and its derivative are constructed from
the following relations:

bi(s) =

M∑
k=0

αi
k

M !

k!(M − k)!
sk(1− s)(M−k) (30)

∂bi(s)

∂s
=

M−1∑
k=0

(αi
k+1−αi

k)
M !

k!(M − k − 1)!
sk(1−s)(M−k−1)

(31)
To partition the full dynamics, the time derivative of

the bezier polynomial is determined by applying the
chain rule as follows:

dbi(s)

dt
=

∂bi(s)

∂s
∗ ∂s

∂qN
∗ ∂qN

∂t
(32)

where secondary terms are defined below.

∂s

∂qN
=

1

q−N − q+N
and

∂qN
∂t

= q̇1

Partitioning the full dynamics described in equation 5
is accomplished by the equation

[
D11D12D13

]q̈1q̈2
q̈3

+
[
C11C12C13

]q̇1q̇2
q̇3

+G11 = 0

(33)
where q̈1 can be computed from the partitioned zero

dynamics equations to obtain z2 and the relation ż2 =
z̈1 = q̈1.

Using this formulation, the objective is to shape the
Bezier polynomials to obtain feasible walking gait. An
optimizer adjusts the positions of the Bezier coefficients
by satisfying the declared constraints. The desired gait

cycle should be periodic in nature such that the post-
impact states equal the pre-impact when the impact
map is applied. The optimizer must tune 8 parameters
considering the Bezier coefficients and the degrees of
freedom of the planar-walker system. The following
properties and steps were defined in the construction of
the optimizer:

1) Properties of Bezier polynomials:
• The polynomial is confined in a convex hull of

the M+1 bezier coefficients. Large oscillations
do not occur during the optimization which
helps in fine tuning the parameters.

• bi(0) = αi
0 and bi(1) = αi

M

•
∂bi(s)
∂s

∣∣∣
s=0

= ∂bi(s)
∂s

∣∣∣
s=1

and α0 = αM

• The above equalities should be satisfied for
periodicity which makes α0 and α1 redundant,
reducing the parameters required for optimiza-
tion. These properties are visualized in Fig. 3
below.

Fig. 3: Bezier polynomial curve of degree (M) = 4

2) Steps followed for gait design using Hybrid Zero
Dynamics

a) Pre-impact state z− is considered
b) Bezier polynomial is exploited to enforce

periodicity
c) Post-impact state z+ is computed using im-

pact map
d) Hybird zero dynamics is integrated for the

gate duration
e) Locomotion cost is checked

3) Cost Function: There are different ways by which
cost function can be defined. For this project,
we have used electric motor energy per distance
traveled as the cost. Minimizing this function tends
to reduced peak torque demands over a step.

• Electric Motor Energy spent per distance trav-
elled

Cost =
1

StepLength

∫ StepDuration

0

|uuT |dt
(34)

Different cost functions can produce different limit
cycles but all should be periodic, symmetric and
feasible.

4) Code Specifications:

a) Degree of Bezier polynomial M = 4
b) Optimizer solves for 8 parameters: the cyclic

variable and its derivative as well as the 3rd,
4th and 5th coefficients for q2 (represented
by α) and q3 (represented by γ) as shown in
the vector f below:

f = [q1, q̇1, α1, α2, α3, γ1, γ2, γ3] (35)

c) Constraints: Swing leg end’s vertical height
at end of gait should be as close to contact
with the ground in the y-direction as possible:

0 ≤ P v
2 ≤ 0.02 meter

where PV
2 is the vertical position of the end

of the swing leg.

Also, the stance leg should be on the left side
of swing leg at gait end which is expressed
by the relation below:

Pm1(q
−/+)− Pm2(q

−/+) ≤ 0

Equality constraints: Cyclic variable (qN) and
its first derivative (˙qN) should be equal before
and after impact.

norm(q−N − q+N) = 0

norm(˙qN
− − ˙qN

+) = 0

d) The final guess for the optimizer is defined
as follows:

f0 = [−20,−210, 25, 40, 45, 180, 195, 200].
pi

180

B. Optimizing Zero Dynamics and Bezier Coefficients
Parameters

Initially the guess for ˙qN was −110°/s with which the
optimizer resulted in ˙qN = -0.8570 rad/s = -49.1025 °/s
which did not seem good enough for the robot motion as
we were expecting it to be somewhere around 150°/s.
Though, desired limit cycle from Zero Dynamics looked
good with this guess but when this was simulated for full
dynamics, it did not make sense as shown in the plots.

Fig. 4: Phase portrait for cyclic variable q1 for zero dy-
namics looks good with bad initial guess ˙qN = −110°/s

Fig. 5: Phase portrait for cyclic variable q1 for full dy-
namics looks bad with bad initial guess ˙qN = −110°/s

After correcting the guess for ˙qN to −210°/s, opti-
mizer was able to converge and resulted in the below
f which made more sense as now ˙qN = -2.2689 rad/s
= -129.9984°/s, and a desired limit cycle is produced
which is both symmetric and feasible.

f =



−0.2996
−2.2689
0.5571
1.2217
0.5992
2.9883
2.8947
2.9671



T

(36)

Fig. 6: Phase portrait for cyclic variable q1 for zero
dynamics with the correct initial guess

V. MINI-PROJECT 4:

A. Feedback Control Development

We found zero dynamics in the previous section for
conducting gait design of the 3 link biped. Here we
assume that the states are always in the zero dynamics
manifold and never pass over. This statement is not
guaranteed and feedback must be designed to provide
attraction to zero dynamics manifold.
The job was completed via feedback linearization. A PD
controller was created with the control action

u = −LgLfh
−1(ν − L2

fh) (37)

where the auxiliary input is defined as

ν = KdLfh+Kph (38)

The input and auxiliary inputs u, ν define control
attraction while on and approaching the zero dynamics
manifold respectively. Here we define appropriate gains
given the results of our gait optimization:

Kp =

[
3200 0
0 3200

]
Kd =

[
320 0
0 320

]
(39)

These gains resulted from empirical experimentation
to achieve the closest possible result to the desired gait.
Alongside these control policies, the parameters resulting
from the optimization algorithm in equation 35 above
are imported into the full dynamics simulation. The
numerical values acquired from the optimizer are listed
above in equation 36

The simulation assigned values to the mentioned D,
C, G, and B matrices using model parameters and an
initial condition from a specified configuration. For the
construction of the control policy (equations 37 and 38
above), develop the state space representation similarly
to equation 6. Control output is correspondingly defined

as follows, resulting in the desired trajectories for the
joints.

h =

[
q2 − b2

q3 − b3

]
(40)

Subjecting h to partial differentiation with respect to
states provides Lfh, the Lee derivative, and its other
forms from equations 37 - 39 to define the control policy.
The derivative of this term, ∂Lfh

∂x , is also imported from
an initialization script and used to define the remaining
terms of the control policy below:

L2
fh =

∂Lfh

∂x
fx (41)

LgLfh =
∂Lfh

∂x
gx (42)

Finally control action is computed as mentioned ear-
lier. In the figure below we can see that the limit cycle
with control action. In which, the derivative term is used
to stir the velocity component and the full dynamics
curve. Here proportional term is used to stabilize the
system. The limit cycle for each gait follows the same
kind of trajectory which shows the control action is
working perfectly.

Fig. 7: Phase portrait for cyclic variable q1 for full
dynamics and feedback implemented

Fig. 8: Joint Trajectories for full dynamics and feedback
implemented

Fig. 8 shows the trajectories obtained while walking
and a point to be noted is the velocity of each joint is
almost constant throughout the 10 steps provided in the
code. There are some discrepancies which can be solved
using further tuning of the PD controller gains.

Fig. 9: Bipedal robot gait with feedback and full dynam-
ics simulated

VI. CONCLUSIONS

In conclusion, this project gave us a high-level control
overview of how to design a bipedal legged locomotion
controller. By deriving the equation of motion, getting
D, C, G matrix by using Euler-Lagrange formulas, we
designed a Hybrid Zero Dynamics based PD controller
with linear feedback, and by using a fmincon based
multi-constraint optimizer, we obtained the optimal gait
for 2D walking. For the simulation result, although the
limit cycle derived by full dynamics is slightly different

from that by zero dynamics, the gait achieved is still
relatively effective and stable.

VII. REFERENCES:
REFERENCES

[1] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and
B. Morris, Feedback control of dynamic bipedal robot locomotion.
CRC Press, 2018.

	Abstract
	Mini-project 1:
	Forward Kinematics Derivation

	Mini-project 2:
	Euler-Lagrange Formalism: Support Phase
	Swing Phase and Impact Mapping:

	Mini-project 3: Gait Design
	Zero Dynamics: Bezier Polynomial
	Optimizing Zero Dynamics and Bezier Coefficients Parameters

	Mini-project 4:
	Feedback Control Development

	Conclusions
	References:
	References

